
Pure and Applied Mathematics Journal
2024; 3(2): 17-28
http://www.sciencepublishinggroup.com/j/pamj
doi: 10.11648/j.pamj.20241302.11
ISSN: 2326-9790 (Print); ISSN: 2326-9812 (Online)

An Integral-like Numerical Approach for Solving Burgers’
Equation

Somrath Kanoksirirath

National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), Pathum
Thani, Thailand

Email address:
somrath.kan@ncr.nstda.or.th

To cite this article:
Somrath Kanoksirirath. (2024). An Integral-like Numerical Approach for Solving Burgers’ Equation. Pure and Applied Mathematics
Journal, 3(2), 17-28. https://doi.org/10.11648/j.pamj.20241302.11

Received: 20 April 2024; Accepted: 28 May 2024; Published: 12 June 2024

Abstract: The Burgers’ equation, commonly appeared in the study of turbulence, fluid dynamics, shock waves, and
continuum mechanics, is a crucial part of the dynamical core of any numerical weather model, influencing simulated
meteorological phenomena. While past studies have suggested several robust numerical approaches for solving the equation,
many are too complicated for practical adaptation and too computationally expensive for operational deployment. This paper
introduces an unconventional approach based on spline polynomial interpolations and the Hopf-Cole transformation. Using
Taylor expansion to approximate the exponential term in the Hopf-Cole transformation, the analytical solution of the simplified
equation is discretized to form our proposed scheme. The scheme is explicit and adaptable for parallel computing, although
certain types of boundary conditions need to be employed implicitly. Three distinct test cases were utilized to evaluate its
accuracy, parallel scalability, and numerical stability. In the aspect of accuracy, the schemes employed cubic and quintic spline
interpolation perform equally well, managing to reduce the `1, `2, and `∞ error norms down to the order of 10−4. Parallel
scalability observed in the weak-scaling experiment depends on time step size but is generally as good as any explicit scheme.
The stability condition is ν∆t/∆x2 > 0.02, including the viscosity coefficient ν due to the Hopf-Cole transformation step.
From the stability condition, the schemes can run at a large time step size ∆t even when using a small grid spacing ∆x,
emphasizing its suitability for practical applications such as numerical weather prediction.

Keywords: Burgers’ Equation, Hopf-Cole Transformation, Explicit Scheme, Parallel Scalability

1. Introduction

The partial differential equation (PDE) of the form

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
(1)

is called the one-dimensional Burgers’ equation. It models
physical transport phenomena in fluid flows, turbulence, traffic
flows, and other areas [1]. It is a vital part of Navier-Stokes
equations where u represents the velocity of the fluid and ν is
a positive viscosity constant. The equation forms the core of
computational fluid dynamics, weather models, ocean models,
and hydrodynamic models.

The second term, uux, is non-linear, which hinders
the development of simple, stable, and accurate numerical

methods for solving various physics equations for practice
uses. This study proposes an approach to address this non-
linear term while keeping the scheme simple and explicit;
since highly complex schemes often suffer from poor parallel
scalability, limiting their practical use. Additionally, in
contrast to most explicit schemes that have severe stability
conditions resulting in higher computational costs, our scheme
is stable even at large time step sizes.

Analytically, the solution of Burgers’ equation can be
obtained by converting it to a diffusion equation, φt = νφxx
using the Hopf-Cole transform, Eqs. (2) and (3). The
diffusion equation is then solved using Fourier transform or
other well-known approaches. This, however, is inconvenient
and unsuitable for arbitrary initial conditions commonly
encountered in practice. Therefore, several numerical schemes
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have been developed.

φ(x, t) = exp
( −1

2ν

∫ x

0′
u(ξ, t) dξ

)
(2)

u = −2ν
φx
φ

(3)

The standard numerical approach to tackle the non-linear
term is to linearize it by assuming that u in uux is locally
constant, as done in previous works such as [2–8]. However,
this approach usually has limitations, particularly in terms of
accuracy. Huang and Abduwali [6] successfully developed
an explicit and unconditionally stable scheme using this
assumption. Another approach is to rewrite the non-linear
term as (u2)x and solve it accordingly as in [9–14]. However,
these methods often involve complicated, iterative, or implicit
schemes that require solving a large set of linear equations,
which can limit computational speed and parallel scalability
of the programs.

On the other hand, some researchers, e.g., [15–24], have
applied numerical Hopf-Cole transformation and solved the
resulting diffusion equation instead. Advanced schemes
have been employed to accurately diffuse exponential profiles
generated by the Hopf-Cole transformation, while the
transformation itself is generally approximated using a finite
number of terms of its infinite series form or integrated
numerically using Gaussian quadrature.

In the aspect of numerical procedures, the relatively
expensive finite element method is widely employed [3, 14,
16, 24–28], as well as the Galerkin approach with cubic
polynomials or other basis functions [2, 4, 5, 7, 10, 11, 17, 29–
32]. Nevertheless, several studies have used the conventional
finite difference method [6, 8, 12, 15, 18–20], but most of them
are implicit schemes. Additionally, Gao et al. [33] applied
a particle-based scheme to the Burgers’ equation. To speed
up implementation, Kumar et al. [34] developed a hybrid
predictor-corrector scheme, while an artificial neural network
was adopted to accelerate a prior Galerkin approach [35].

In this paper, we introduce an integral-like approach
that mimics mathematical transformations and temporal
integration to advance the numerical solution in time, while
gridded data is represented as a continuous function by
employing spline interpolation. The general idea of this
approach is explained in Section 2. In Section 3, the time-
stepping method used in solving the diffusion equation is
described as an example and as an indispensable part of
the scheme for solving Burgers’ equation. In Section 4,
the numerical Hopf-Cole transformation is explained and the
entire scheme is composed. In Section 5, the results of several
numerical experiments are shown and discussed, including an

example of solving the Burgers’-Fisher equation. Conclusions
are presented in Section 6.

2. Integral-like Approach

The proposed integral-like approach is different from
conventional methods in both numerical differentiation in
space and numerical forwarding scheme in time. To solve
a PDE, our data grid contains not only the necessary field
variables but also their derivatives, so that the variables
can be represented as a continuous function using spline
polynomial interpolation between adjacent grid points. To
advance the variables in time, mathematical procedures along
with additional approximations, based on the corresponding
analytical solution, are emulated using the known continuous
spline polynomial function. The derivatives also need to be
updated in time. Initializing the derivatives using a finite
difference method has been found to be sufficient. Since we
can split terms in a PDE and solve more but simpler PDEs
successively, as discussed in [36], the approach can be applied
to any Burger-type equation. In Section 5, a Burgers’-Fisher
equation, ut + uux = νuxx − 3u(1− u)(1− 2u), is split and
solved as a demonstration.

In this paper, we investigate integral-like methods having
variables represented by linear, cubic, and quintic spline
interpolations. These methods will be referred to as linear
grid scheme (LG), cubic grid scheme (CG), and quintic grid
scheme (QG) respectively. For the cubic and quintic schemes,
the second-order central finite difference is used to initialize
ux and uxx, except at the two end points where the first-order
forward and backward finite difference are employed instead.

To forward the numerical solution of the Burgers’ equation
for one time step, the Hopf-Cole transformation is applied
numerically, the resulting diffusion equation is then solved
in the Hopf-Cole space and converted back to the normal
space. The application of the integral-like approach to the
diffusion equation is discussed first to familiarize readers with
the general idea of the method. It is worth noting that the
integral-like approach is an explicit scheme that incorporates
mathematical formulas and is equivalent to a Semi-Lagrangian
method when applied to the linear advection equation.

3. Method for Linear Diffusion

The linear diffusion equation, φt = νφxx, where ν is a
positive diffusion constant, can be solved analytically using
the Fourier transform. This approach is discussed in textbooks
such as [37] and [38]. The analytical solution is

φ(x, t) =

∫ ∞
−∞

1√
4πνt

exp
(
− (x− ξ)2

4νt

)
φ(ξ, 0) dξ (4)
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with analytical boundary conditions φ(∞, t) = φ(−∞, t) =
0.

The time-stepping scheme of the integral-like approach can
be derived from Eq. (4) by substituting the local spline

polynomial function Pj(y, t) and changing the time interval.
In the case of CG, Pj(y, t) = ajy

3 + bjy
2 + cjy + dj , with

equally-spacing grid points, Eq. (4) becomes

φ(xi, t+ ∆t) =

∞∑
j=−∞

∫ ∆x

0

1√
4πν∆t

exp
(
− (xi − (ξj + y))2

4ν∆t

)
Pj(y, t) d(ξj + y)

≈ 1√
4πν∆t

∑
|`i,j |≤5σ

∫ ∆x

0

exp
(
− (y + `i,j)

2

4ν∆t

) (
ajy

3 + bjy
2 + cjy + dj

)
dy (5)

Due to the Gaussian decay term, the summation range can
be limited to j such that the relative distance `i,j ≡ ξj − xi
is within a margin of five standard deviations, i.e., 5σ =
5
√

2ν∆t, which is chosen for this paper.
It was found experimentally that all three methods are

numerically stable as long as the marginal range of 5σ is
larger than the grid spacing ∆x. This is evidenced in Figure
7. Mathematically, the condition is equivalent to d ≥ 0.02,
where d = ν(∆t)/(∆x)2 is a non-dimensional diffusion
number. Interestingly, the stability condition for these methods
is reversed compared to the stability condition of explicit finite
difference schemes. Since the 5σ length is an estimation, the
value 0.02 is not exact. Notably, the stability condition is
independent of u.

Due to the summation of j within the marginal
range, the time complexity of the integral-like method
is O((5σ/∆x)nxnt) ∼ O((

√
ν∆t/∆x)nxnt) ∼

O(
√
ν n2

xn
1/2
t ), where nx is the number of grid points and

nt is the total number of time steps. Therefore, the complexity
of the algorithm is not linear.

Another implication of the marginal range is that the
boundary conditions may have to be specified by a small set
of points, instead of a single point exactly at the boundary.
For example, in the case of periodic boundary conditions, the
required outside point −j on the left of the considered domain
corresponds to the inside point n − j. Similarly, the values
at the outside point nx + j on the right are that of the j-th
point. For Dirichlet and no-flux boundary conditions, reflected
points or their mirror images are used in this study. Adding
extra grid points to both ends can keep the implementation
simple and is adopted here, as it also matches with the domain
decomposition method for parallelization.

Next, to quantifies Eq. (5), the indefinite integral of the
form,

∫
ym exp(−(y + `)2/δ) dy, where m is a positive

integer, is evaluated recursively using Eqs. (6) - (8), which
is derived by applying integration by parts.

PGm ≡
∫
ym exp

(
− (y + `)2

δ

)
dy = (m− 1)

δ

2
PGm−2 − ` PGm−1 − δ

2
ym−1 exp

(
− (y − `)2

δ

)
(6)

where

PG0 =

√
πδ

2

[
erf

(
y + `√
δ

)
− erf

(
`√
δ

)]
(7)

PG1 = −`
√
πδ

2

[
erf

(
y + `√
δ

)
− erf

(
`√
δ

)]
− δ

2

[
exp

(
− (y + `)2

δ

)
− exp

(
− `2

δ

)]
(8)

On the other hand, the coefficients of the cubic spline polynomial function Pj(y), i.e., aj , bj , cj and dj , are found by solving
Eqs. (9) - (12).

Pj(∆x, t) = φj+1 = aj(∆x)3 + bj(∆x)2 + cj(∆x) + dj (9)

∂xPj(∆x, t) = ∂xφj+1 = 3aj(∆x)2 + 2bj(∆x) + cj (10)
Pj(0, t) = φj = dj (11)

∂xPj(0, t) = ∂xφj = cj (12)
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We denote ∂xφj as the first derivative of φ at grid point j. These derivatives are stored in a data grid and are updated by using
Eq. (13), which is derived by differentiating Eq. (5) with respect to xi.

∂

∂xi
φ(xi, t+ ∆t) =

1√
4πν∆t

∑
|`i,j |≤5σ

∫ ∆x

0

[
∂(ξj − xi)

∂xi

∂

∂`i,j
exp
(
− (y + `i,j)

2

4ν∆t

)] (
ajy

3 + bjy
2 + cjy + dj

)
dy

=
1√

4πν∆t

∑
|`i,j |≤5σ

∫ ∆x

0

[
(−1)

(−2(y + `i,j)

4ν∆t

)
exp
(
− (y + `i,j)

2

4ν∆t

)] (
ajy

3 + bjy
2 + cjy + dj

)
dy

=
1

(2ν∆t)
√

4πν∆t

∑
|`i,j |≤5σ

∫ ∆x

0

exp
(
− (y + `i,j)

2

4ν∆t

) (
ajy

4 + (bj + `i,jaj)y
3 + (cj + `i,jbj)y

2

+ (dj + `i,jcj)y + `i,jdj

)
dy (13)

Hence, Eqs. (5) and (13) together form the complete
integral-like scheme of CG for solving Burgers’ equation.
Their computation is facilitated by Eqs. (6) - (12). The
derivation of LG and QG follows the same procedures as CG
shown above but with a different order of spline polynomial
Pj(y) substituted.

4. Method for Hopf-Cole Transformation

The first step in performing the forward Hopf-Cole
transformation, changing u to φ (Eq. 2), is to compute the
integral of u in Eq. (14). For CG, it is

Int(u) ≡
∫ xi

0′
u(ξ, t) dξ =

i−1∑
j=0

∫ ∆x

0

Pj(ξ, t) dξ

=

i−1∑
j=0

∫ ∆x

0

(
ajξ

3 + bjξ
2 + cjξ + dj

)
dξ

=

i−1∑
j=0

aj
(∆x)4

4
+ bj

(∆x)3

3

+ cj
(∆x)2

2
+ dj(∆x) (14)

Then, the exponent−(1/2ν) Int(u) in Eq. (2) is represented
as a quintic spline polynomial functionQi using Int(u), u, and
ux at i and i+1. The quintic coefficients are found by standard
approach, analogous to Eqs. (9) - (12).

Then, for a quintic polynomial Qi of the i-th segment, the
value of φi is approximated by the Taylor series of exp(Qi). In
our implementation, the number of terms in the Taylor series is
varied adaptively, up to 16 terms, to ensure that the deviation is
less than 0.01%. The resulting φi, which satisfies the diffusion
equation, is then processed further using the method discussed
in Section 3.

On the other hand, the backward Hopf-Cole transformation
from φ to u in Eq. (3) is done by direct substitution. For
example, u and ux of CG are deduced from φ, φx, and φxx by
using Eqs. (15) and (16).

ui = −2ν

(
∂xφi
φi

)
(15)

∂xui = −2ν

(
φi(∂

2
xφi)− (∂xφi)

2

φ2
i

)
(16)

To sum up, an integral-like scheme for solving Burgers’
equation consists of the following components: (1) Numerical
Hopf-Cole integration scheme for transforming from u space
to φ space, (2) Numerical diffusion scheme for advancing
φ(x, t) and its required derivatives to φ(x, t + ∆t), (3)
Numerical Hopf-Cole differentiation scheme for transforming
φ(x, t+ ∆t) and its derivatives back to u space, and (4) Spline
interpolation method for representing discrete data points as
a continuous function for the computation in (1)-(3). One
complete time iteration step ∆t for solving Burgers’ equation
is composed of (1), (2) and (3). Finite difference schemes
are employed for computing the initial derivatives such as
ux(x, t0) from u(x, t0). Our source code is publicly available
on GitHub (https://github.com/SKanoksi).

An implementation of an adaptive grid was explored, where
grid points are redistributed based on the estimated path length
of u, using Gaussian quadrature. However, the numerical
solution was found to be less accurate due to numerical errors
introduced when repeatedly rearranging the grids. Therefore,
our unsuccessful implementation of the adaptive grid is briefly
noted in this paper to inform the possibility that the adaptive
grid may not improve integral-like schemes in general.

5. Numerical Experiment

In this section, four example cases are used to evaluate the
integral-like methods for one-dimensional Burgers’ equation,
i.e., LG, CG, and QG. The accuracy of the methods is tested
using Example 1 and 2, while numerical stability and parallel
scalability are evaluated in Example 3. Example 4 investigates
the viability of the split approach.

To quantify the accuracy of the schemes when comparing
with exact/analytical solutions f(x), the `1, `2, and `∞ error
norms are adopted. These error norms are calculated as shown
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below, for an equally-spacing grid.

`1(u) =

∑n
j=0 |uj − f(xj)|∑n

j=0 |f(xj)|
, (17)

`2(u) =

√∑n
j=0(uj − f(xj))2√∑n

j=0 f(xj)2
, (18)

`∞(u) =
max|uj − f(xj)|

max|f(xj)|
(19)

Example 1. Burgers’ equation (Eq. 1) with the initial
condition

u(x, 0) = sin(πx) (20)

and the exact solution

u(x, t) =
4πν

∑∞
k=1 k Ak sin(kπx) exp(−k2π2νt)

A0 + 2
∑∞
k=1 Ak cos(kπx) exp(−k2π2νt)

(21)

where

Ak =

∫ 1

0

cos(kπx) exp
(cos(πx)− 1

2πν

)
dx (22)

are considered. Unlike in [33] and [39], periodic boundary
conditions are employed.

The exact solution and numerical results are displayed in
Figure 1 for ν = 0.01, ∆x = 0.02, and ∆t = 0.005, while the
numerical values at some grid points are given in Table 1. The
error norms when using four different pairs of ∆x and ∆t are
shown in Table 2. From the results, LG always performs the
worst, while CG and QG are relatively comparable. For CG
and QG, as the grid spacing and time step size are reduced, the
error norms become saturated at around `2 = 10−3 as seen in
Figure 4. This behavior may be caused by truncation errors
introduced when approximating exp and erf functions, which
are frequently used in the schemes. From Figure 4, although
LG is approximately second-order accurate, the `2 error norm
probably levels off at around 10−3 as well.

Table 1. Numerical results and exact solution of Example 1 at t = 1.0 using ν = 0.1 and ∆t = 0.01.

Position ∆x LG CG QG Exact

0.1
0.02 0.065558 0.066306 0.066305

0.066316
0.01 0.066101 0.066284 0.066283

0.2
0.02 0.129578 0.131189 0.131187

0.131209
0.01 0.130750 0.131145 0.131144

0.3
0.02 0.190039 0.192755 0.192752

0.192786
0.01 0.192020 0.192689 0.192687

0.4
0.02 0.243809 0.247999 0.247995

0.248041
0.01 0.246874 0.247910 0.247908

0.5
0.02 0.285749 0.291864 0.291859

0.291916
0.01 0.290232 0.291752 0.291749

0.6
0.02 0.307656 0.316005 0.316000

0.316068
0.01 0.313784 0.315876 0.315872

0.7
0.02 0.297804 0.308022 0.308017

0.308089
0.01 0.305304 0.307884 0.307880

0.8
0.02 0.243417 0.253657 0.253653

0.253718
0.01 0.250927 0.253533 0.253529

0.9
0.02 0.139279 0.146027 0.146025

0.146065
0.01 0.144223 0.145951 0.145949

Table 2. Error norms of Example 1 at t = 1.0 using ν = 0.1.

Scheme ∆x ∆t d `1 `2 `∞

LG

0.02 0.0200 5.0 1.35e-02 1.46e-02 1.72e-02

0.02 0.0100 2.5 2.64e-02 2.85e-02 3.35e-02

0.01 0.0100 10.0 7.19e-03 7.75e-03 9.07e-03

0.01 0.0025 2.5 2.70e-02 2.92e-02 3.42e-02

CG

0.02 0.0200 5.0 4.25e-04 4.33e-04 4.56e-04

0.02 0.0100 2.5 1.97e-04 2.00e-04 2.11e-04

0.01 0.0100 10.0 6.07e-04 6.16e-04 6.46e-04

0.01 0.0025 2.5 8.27e-04 8.39e-04 8.76e-04

QG

0.02 0.0200 5.0 4.40e-04 4.48e-04 4.72e-04

0.02 0.0100 2.5 2.12e-04 2.15e-04 2.26e-04

0.01 0.0100 10.0 6.18e-04 6.28e-04 6.58e-04

0.01 0.0025 2.5 8.97e-04 9.10e-04 9.50e-04
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Figure 1. Numerical solutions and exact solution of Example 1: ν = 0.01, ∆x = 0.02, and ∆t = 0.005.

Figure 2. `2 error norm of Example 1 as a function of ∆x using ν = 0.1, ∆t = 0.0125 and nt = 100.

Figure 3. Numerical solutions and exact solution of Example 2: ν = 0.005, ∆x = 0.02 and ∆t = 0.02.

Figure 4. `2 error norm of Example 2 as a function of ∆x using ν = 0.005, ∆x = 0.02, ∆t = 0.02 and nt = 100.
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Table 3. Numerical results and exact solution of Example 2 at t = 2.4 using ν = 0.005 and ∆t = 0.02.

Position ∆x LG CG QG Exact

0.1
0.02 0.041664 0.041663 0.041662

0.041667
0.01 0.041665 0.041665 0.041665

0.2
0.02 0.083328 0.083328 0.083326

0.083333
0.01 0.083331 0.083331 0.083330

0.3
0.02 0.124995 0.124997 0.124994

0.125000
0.01 0.124996 0.124996 0.124996

0.4
0.02 0.166648 0.166661 0.166656

0.166665
0.01 0.166659 0.166660 0.166659

0.5
0.02 0.208207 0.208312 0.208305

0.208318
0.01 0.208299 0.208311 0.208309

0.6
0.02 0.248953 0.249808 0.249797

0.249816
0.01 0.249681 0.249806 0.249804

0.7
0.02 0.281531 0.288475 0.288445

0.288472
0.01 0.287090 0.288458 0.288454

0.8
0.02 0.239172 0.266132 0.266155

0.266228
0.01 0.258598 0.266184 0.266179

0.9
0.02 0.055092 0.038663 0.038622

0.038651
0.01 0.043197 0.038638 0.038633

1.0
0.02 0.003517 0.000902 0.000911

0.000912
0.01 0.001385 0.000911 0.000912

1.1
0.02 0.000137 0.000012 0.000013

0.000013
0.01 0.000026 0.000013 0.000013

Table 4. Error norms of Example 2 at t = 2.4, using ν = 0.005.

Scheme ∆x ∆t d `1 `2 `∞

LG

0.02 0.035 0.4375 1.77e− 02 2.86e− 02 5.55e− 02

0.02 0.020 0.2500 3.09e− 02 4.85e− 02 9.10e− 02

0.01 0.020 1.0000 7.82e− 03 1.30e− 02 2.56e− 02

0.01 0.005 0.2500 3.12e− 02 4.91e− 02 9.18e− 02

CG

0.02 0.035 0.4375 2.78e− 04 3.95e− 04 8.24e− 04

0.02 0.020 0.2500 8.78e− 05 1.48e− 04 3.98e− 04

0.01 0.020 1.0000 6.89e− 05 9.10e− 05 1.77e− 04

0.01 0.005 0.2500 1.71e− 04 2.01e− 04 3.86e− 04

QG

0.02 0.035 0.4375 3.91e− 04 5.41e− 04 1.01e− 03

0.02 0.020 0.2500 1.31e− 04 1.67e− 04 3.04e− 04

0.01 0.020 1.0000 8.39e− 05 1.09e− 04 2.01e− 04

0.01 0.005 0.2500 3.31e− 04 3.81e− 04 6.41e− 04

Example 2. Burgers’ equation (Eq. 1) with the Dirichlet
boundary condition

u(0, t) = u(1.2, t) = 0 (23)

and the exact solution

u(x, t) =
x/t

1 +
√
t/t0 exp(x2/4νt)

(24)

where t ≥ 1 and t0 = exp(0.125/ν) are considered as in [40],
[33], and [39]. In our case, the Dirichlet boundary conditions
are modeled using the inverted reflection of the solution.

The results of this example, using ν = 0.005, ∆x = 0.02,
and ∆t = 0.02, are shown in Figure 3 and Table 3, while
Table 4 and Figure 4 provide more insight into their order of
accuracy. The results in Figure 4 exhibit similar features as in
Figure 2 of the previous example, except for the oscillation
of CG and QG at small ∆x. The swing may be due to



24 Somrath Kanoksirirath: An Integral-like Numerical Approach for Solving Burgers’ Equation

the accumulation of errors, similar to Runge’s and/or Gibbs’
phenomenon near the steep slope. This behavior does not
occur in Example 1, probably because the abrupt change is
stationary at the grid point x = 0, while, in this example, the
change is not always on a grid point as ∆x is varied.

Example 3. Burgers’ equation (Eq. 1) with a step initial
condition at x = 0 is used to study both the stability and
parallel scalability of the integral-like method. The exact
solution for infinite boundary conditions u(−∞, t) = 1 and
u(∞, t) = 0 is

u(x, t) =
erfc

(
x−t
2
√
νt

)
erfc

(
− x

2
√
νt

)
exp
(x−t/2

2ν

)
+ erfc

(
x−t
2
√
νt

) (25)

which becomes a traveling-wave solution thereafter about t =
10. Using ν = 1 and ∆t = 0.04, the results are shown in
Figures 5 and 6.

In Figure 7, the `2 error norm is plotted against the non-
dimensional diffusion number d = ν∆t/∆x2. It can be
seen that the stability condition of the integral-like method is
not d < 1, as also indicated by Figures 2 and 4, but rather
d > 0.02. This finding demonstrates that, unlike most simple
explicit methods, the integral-like method is stable at large ∆t.
The condition d > 0.02 implies that the marginal range 5σ
has to be larger than the grid spacing, as discussed in Section
3. The remaining stability issue encountered when ν is very
small can be resolved by simply increasing ∆t.

Figure 5. Numerical solutions and exact solution of Example 3: ν = 1, ∆x = 0.6 and ∆t = 0.04.

Figure 6. Numerical solutions and exact solution of Example 3: ν = 1, ∆x = 4.35 and ∆t = 0.8.

Figure 7. `2 error norm of Example 3 as a function of ν using ∆x = 4.35, nx = 401, ∆t = 0.8 and nt = 100.
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A weak-scaling experiment was performed on the TARA
cluster of the NSTDA supercomputer center (ThaiSC) to test
the parallel efficiency of the integral-like method. Both the
number of grid points and the number of time steps are
adjusted to scale the computation workload while having the
grid spacing ∆x and the marginal range 5σ = 5

√
2ν∆t

approximately unaltered. In other words, roughly the same
number of u(xj , t) is used in updating u(xi, t+ ∆t).

With Ns representing a running variable, the number of
employed CPU cores is Ncore = N2

s operating on the
total number of grid points nx = 500Ns + 1 for domain
[−15, 400Ns + 20] to simulate from t0 = 10 to t = 800Ns +
10. The time step size ∆t is varied to explore the influence of
the marginal range on parallel scalability. This is because the
bigger the marginal range is, the larger the overlapped areas
of the domain decomposition algorithm are. The outputs are
shown in Figure 6.

TARA compute nodes, equipped with two Intel Xeon Gold
6148 CPU (2.40 GHz) and 192 GB of RAM, are employed.
Our program was coded in Python and parallelized using
mpi4py library, before being ported to C language by using
Cython and compiled on TARA using foss-2021b toolchain.
The weak-scaling parallel efficiency R(1)/R(Ns), where
R(Ns) is the wall-clock runtime of the Ns scaled case, is
plotted in Figure 8 from Ns = 1 to Ns = 10. The results
of the serial runtime R(1) are provided in Table 5.

From Figure 8, the parallel efficiency of the integral-like
schemes decreases as a larger time step size ∆t is chosen.
However, from Table 5, the wall-clock runtime for a larger
time step size is evidently lower. The parallel efficiency also
declines as the problem size becomes larger and more CPU
cores are used but remains roughly unchanged at moderate-to-
large scale cases. Therefore, the time step size of operational,
final applications may need to be experimentally found to
match available computational resources.

Figure 8. Weak-scaling parallel efficiency of the integral-like schemes for Burgers’ equation using time step size ∆t = 0.2, 0.8 and 3.2.

Table 5. The wall-clock serial runtime R(1) of each integral-like scheme for different
time step size ∆t, but ran for the same simulation time, i.e., from t0 = 10 to t = 810.

∆t 5σ d
Runtime (sec)

LG CG QG
0.2 3.16 0.26-0.31 1,945 3,171 4,714

0.8 6.32 1.05-1.23 890 1,420 2,069

3.2 12.65 4.22-4.92 327 508 757

Example 4. Burgers’-Fisher equation

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
− 3u(1− u)(1− 2u) (26)

is considered to show a possible extension of the integral-like
method. Applying the split approach, which separates terms in
the equation into stages and successively solves them, to Eq.
(26), the stage equations are

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
(27)

∂u

∂t
= −3u(1− u)(1− 2u) (28)

The first stage, Eq. (27), is to solve Burgers’ equation;
therefore, the procedures discussed in previous sections are
directly employed. The second stage, Eq. (28), is a
growth/decay equation. Its analytical solution is found by
solving

−3 dt =

(
1

u
− 1

(1− u)
+

4

(1− 2u)

)
du

∴ A e−3t =
1

4
− 1

4(2u− 1)2

Therefore, the integral-like scheme for this second stage is

u(xi, t+ ∆t) =
1

2

(
1± 1√

1− 4A exp(−3∆t)

)
where

A =
1

4

(
1− 1

(2u(xi, t)− 1)2

)
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From [41], an exact solution of Eq. (26) when ν = 1 is

u(x, t) =
1

2

(
1− tanh

(
x− t

2

))
(29)

Using the same setup as in Figure 5 of Example 3, the
numerical results of CG and QG agree well with the exact
solution as seen in Figure 9. The integral-like approach,
therefore, has the potential for solving other Burger-type
equations as well.

Figure 9. Numerical solutions and exact solution of Example 4: ν = 1, ∆x = 0.6 and ∆t = 0.04.

6. Conclusions

In this study, a numerical approach based on the
continuous representation of variables using local polynomial
interpolation is explored. When applied to solve the one-
dimensional Burgers’ equation, the schemes derived using
linear, cubic, and quintic interpolations are found to be
numerically stable at large time step size ∆t, with a stability
condition of ν∆t > 0.02∆x2. From numerical experiments,
the error norms decrease with smaller grid spacing and become
constant around the order of 10−3 − 10−4. The weak-
scaling parallel efficiency of the schemes is satisfactory among
explicit scheme. This approach shows promise for operational
applications that favor reliability, fast computation and good
parallel scalability, such as numerical weather prediction.

Abbreviations

PDE Partial Differential Equation
LG Linear Grid scheme
CG Cubic Grid scheme
QG Quintic Grid scheme
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